Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato

氧化镁对番茄穿孔黄单胞菌和细菌性斑点病的粒径依赖性杀菌活性

阅读:8
作者:Y Y Liao, A Strayer-Scherer, J C White, R De La Torre-Roche, L Ritchie, J Colee, G E Vallad, J Freeman, J B Jones, M L Paret

Abstract

Bacterial spot, caused by Xanthomonas spp., is a highly destructive disease of tomatoes worldwide. Copper (Cu) bactericides are often ineffective due to the presence of Cu-tolerant strains. Magnesium oxide (MgO) is an effective alternative to Cu bactericides against Xanthomonas spp. However, the effects of particle size on bactericidal activity and fruit elemental levels are unknown. In this study, nano (20 nm) and micron (0.3 and 0.6 µm) size MgO particles were compared for efficacy. Nano MgO had significantly greater in vitro bactericidal activity against Cu-tolerant X. perforans than micron MgO at 25-50 µg/ml. In field experiments nano and micron MgO applied at 200 and 1,000 µg/ml were evaluated for disease control. Nano MgO at 200 µg/ml was the only treatment that consistently reduced disease severity compared to the untreated control. Inductively Coupled Plasma Optical Emission Spectroscopy revealed that nano MgO applications did not significantly alter Mg, Cu, Ca, K, Mn, P and S accumulation compared to fruits from the untreated plots. We demonstrated that although both nano MgO and micron MgO had bactericidal activity against Cu-tolerant strains in vitro, only nano MgO was effective in bacterial spot disease management under field conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。