Determining the quantitative relationship between glycolysis and GAPDH in cancer cells exhibiting the Warburg effect

确定表现出瓦博格效应的癌细胞中糖酵解与 GAPDH 之间的定量关系

阅读:6
作者:Xiaobing Zhu, Chengmeng Jin, Qiangrong Pan, Xun Hu

Abstract

Previous studies have identified GAPDH as a promising target for treating cancer and modulating immunity because its inhibition reduces glycolysis in cells (cancer cells and immune cells) with the Warburg effect, a modified form of cellular metabolism found in cancer cells. However, the quantitative relationship between GAPDH and the aerobic glycolysis remains unknown. Here, using siRNA-mediated knockdown of GAPDH expression and iodoacetate-dependent inhibition of enzyme activity, we examined the quantitative relationship between GAPDH activity and glycolysis rate. We found that glycolytic rates were unaffected by the reduction of GAPDH activity down to 19% ± 4.8% relative to untreated controls. However, further reduction of GAPDH activity below this level caused proportional reductions in the glycolysis rate. GAPDH knockdown or inhibition also simultaneously increased the concentration of glyceraldehyde 3-phosphate (GA3P, the substrate of GAPDH). This increased GA3P concentration countered the effect of GAPDH knockdown or inhibition and stabilized the glycolysis rate by promoting GAPDH activity. Mechanistically, the intracellular GA3P concentration is controlled by the Gibbs free energy of the reactions upstream of GAPDH. The thermodynamic state of the reactions along the glycolysis pathway was only affected when GAPDH activity was reduced below 19% ± 4.8%. Doing so moved the reactions catalyzed by GAPDH + PGK1 (phosphoglycerate kinase 1, the enzyme immediate downstream of GAPDH) away from the near-equilibrium state, revealing an important biochemical basis to interpret the rate control of glycolysis by GAPDH. Collectively, we resolved the numerical relationship between GAPDH and glycolysis in cancer cells with the Warburg effect and interpreted the underlying mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。