Centromere proteins are asymmetrically distributed between newly divided germline stem and daughter cells and maintain a balanced niche in Drosophila males

着丝粒蛋白在新分裂的生殖系干细胞和子细胞之间不对称分布,并在果蝇雄性中保持平衡的生态位

阅读:5
作者:Antje M Kochendoerfer, Rachel S Keegan, Elaine M Dunleavy

Abstract

Stem cells can undergo asymmetric cell division (ACD) giving rise to one new stem cell and one differentiating daughter cell. In Drosophila germline stem cells (GSCs), the centromeric histone CENP-A (CID in flies) is asymmetrically distributed between sister chromatids such that chromosomes that end up in the GSC harbor more CID at centromeres. A model of "mitotic drive" has been proposed in GSCs such that stronger and earlier centromere and kinetochore interactions with microtubules bias sister chromatid segregation. Here we show that in Drosophila males, centromere proteins CID, CAL1, and CENP-C are asymmetrically distributed in newly divided GSCs and daughter cells in S phase. We find that overexpression of CID (either with or without CAL1) or CENP-C depletion disrupts CID asymmetry, with an increased pool of GSCs relative to daughter cells detectable in the niche. This result suggests a shift toward GSC self-renewal rather than differentiation, important for maintaining tissue homeostasis. Overexpression of CAL1 does not disrupt asymmetry, but instead drives germ cell proliferation in the niche. Our results in male GSCs are comparable to female GSCs, indicating that despite differences in signaling, organization, and niche composition, the effects of centromere proteins on GSC maintenance are conserved between the sexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。