A spatiotemporal characterization method for the dynamic cytoskeleton

动态细胞骨架的时空表征方法

阅读:6
作者:Ghada Alhussein, Aya Shanti, Ilyas A H Farhat, Sara B H Timraz, Noaf S A Alwahab, Yanthe E Pearson, Matthew N Martin, Nicolas Christoforou, Jeremy C M Teo

Abstract

The significant gap between quantitative and qualitative understanding of cytoskeletal function is a pressing problem; microscopy and labeling techniques have improved qualitative investigations of localized cytoskeleton behavior, whereas quantitative analyses of whole cell cytoskeleton networks remain challenging. Here we present a method that accurately quantifies cytoskeleton dynamics. Our approach digitally subdivides cytoskeleton images using interrogation windows, within which box-counting is used to infer a fractal dimension (Df ) to characterize spatial arrangement, and gray value intensity (GVI) to determine actin density. A partitioning algorithm further obtains cytoskeleton characteristics from the perinuclear, cytosolic, and periphery cellular regions. We validated our measurement approach on Cytochalasin-treated cells using transgenically modified dermal fibroblast cells expressing fluorescent actin cytoskeletons. This method differentiates between normal and chemically disrupted actin networks, and quantifies rates of cytoskeletal degradation. Furthermore, GVI distributions were found to be inversely proportional to Df , having several biophysical implications for cytoskeleton formation/degradation. We additionally demonstrated detection sensitivity of differences in Df and GVI for cells seeded on substrates with varying degrees of stiffness, and coated with different attachment proteins. This general approach can be further implemented to gain insights on dynamic growth, disruption, and structure of the cytoskeleton (and other complex biological morphology) due to biological, chemical, or physical stimuli. © 2016 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。