Morphine-Driven m6A Epitranscriptomic Neuroadaptations in Primary Cortical Cultures

原代皮质培养中吗啡驱动的 m6A 表观转录组神经适应

阅读:6
作者:Konrad R Dabrowski, Stephanie E Daws

Abstract

Opioid overdose is the leading cause of accidental death in the United States and remains a major public health concern, despite significant resources aimed at combating opioid misuse. Neurobiological research to elucidate molecular and cellular consequences of opioid exposure is required to define avenues to explore for reversal of opioid-induced neuroadaptations. Opioids impart well-documented regulation of the transcriptome and epigenetic modifications in the brain, but opioid-induced epitranscriptomic posttranscriptional regulation of RNA is vastly understudied. N6-methyladenosine (m6A) RNA methylation is significantly enriched in the brain and involved in learning, memory, and reward. m6A modifications have not been studied in opioid use disorder, despite being the most common RNA modification. We detected significant regulation of m6A-modifying enzymes in rat primary cortical cultures following morphine treatment, including AlkB Homolog 5 (Alkbh5). The m6a demethylase ALKBH5 functions as an m6A eraser, removing m6A modifications from mRNA. We hypothesized that chronic opioid treatment regulates m6A modifications through modulation of Alkbh5 and profiled m6A modifications in primary cortical cultures following chronic morphine treatment and Alkbh5 knock-down. We observed differential regulation of m6A modifications for a common set of transcripts following morphine or Alkbh5 knock-down, and the two treatments elicited concordant m6A epitranscriptomic profiles, suggesting that a subset of morphine-driven m6A modifications may be mediated through downregulation of Alkbh5 in cortical cultures. Gene Ontology terms of commonly regulated transcripts included serotonin secretion, synapse disassembly, neuron remodeling, and immune response. Thus, we conclude that morphine can drive epitranscriptomic changes, a subset of which may occur in an Alkbh5-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。