A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes

一种用于快速分析红细胞影膜蛋白质组的稳健质谱方法

阅读:8
作者:Haddy K S Fye, Paul Mrosso, Lesley Bruce, Marie-Laëtitia Thézénas, Simon Davis, Roman Fischer, Gration L Rwegasira, Julie Makani, Benedikt M Kessler

Background

Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane 'ghost' fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts.

Conclusions

The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC-MS of potential applicability to larger clinical cohorts in a variety of disease contexts.

Methods

Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC-MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity.

Results

The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC-MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. Conclusions: The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC-MS of potential applicability to larger clinical cohorts in a variety of disease contexts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。