A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans

一种新型乙酰木聚糖酯酶,可使取代木聚糖完全脱乙酰化

阅读:8
作者:Fakhria M Razeq, Edita Jurak, Peter J Stogios, Ruoyu Yan, Maija Tenkanen, Mirjam A Kabel, Weijun Wang, Emma R Master

Background

Acetylated 4-O-(methyl)glucuronoxylan (GX) is the main hemicellulose in deciduous hardwood, and comprises a β-(1→4)-linked xylopyranosyl (Xylp) backbone substituted by both acetyl groups and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Whereas enzymes that target singly acetylated Xylp or doubly 2,3-O-acetyl-Xylp have been well characterized, those targeting (2-O-MeGlcpA)3-O-acetyl-Xylp structures in glucuronoxylan have remained elusive.

Conclusion

This study reports the discovery and characterization of the novel carbohydrate esterase, FjoAcXE. In addition to cleaving singly acetylated Xylp, and doubly 2,3-O-acetyl-Xylp, FjoAcXE efficiently cleaves internal 3-O-acetyl-Xylp linkages in (2-O-MeGlcpA)3-O-acetyl-Xylp residues along with densely substituted and branched xylooligomers; activities that until now were missing from the arsenal of enzymes required for xylan conversion.

Results

An unclassified carbohydrate esterase (FjoAcXE) was identified as a protein of unknown function from a polysaccharide utilization locus (PUL) otherwise comprising carbohydrate-active enzyme families known to target xylan. FjoAcXE was shown to efficiently release acetyl groups from internal (2-O-MeGlcpA)3-O-acetyl-Xylp structures, an activity that has been sought after but lacking in known carbohydrate esterases. FjoAcXE action boosted the activity of α-glucuronidases from families GH67 and GH115 by five and nine times, respectively. Moreover, FjoAcXE activity was not only restricted to GX, but also deacetylated (3-O-Araf)2-O-acetyl-Xylp of feruloylated xylooligomers, confirming the broad substrate range of this new carbohydrate esterase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。