A nutrient responsive lipase mediates gut-brain communication to regulate insulin secretion in Drosophila

营养反应性脂肪酶介导肠脑通讯来调节果蝇的胰岛素分泌

阅读:5
作者:Alka Singh #, Kandahalli Venkataranganayaka Abhilasha #, Kathya R Acharya, Haibo Liu, Niraj K Nirala, Velayoudame Parthibane, Govind Kunduri, Thiruvaimozhi Abimannan, Jacob Tantalla, Lihua Julie Zhu, Jairaj K Acharya, Usha R Acharya

Abstract

Pancreatic β cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。