Severe elastolysis in hereditary gelsolin (AGel) amyloidosis

遗传性凝溶胶蛋白 (AGel) 淀粉样变性中的严重弹性蛋白溶解

阅读:14
作者:Susanna Koskelainen, Fang Zhao, Hannu Kalimo, Marc Baumann, Sari Kiuru-Enari

Abstract

AGel amyloidosis is a dominantly inherited systemic amyloidosis caused by mutations p.D214N or p.D214Y resulting in gelsolin amyloid (AGel) formation. AGel accumulates extracellularly in many tissues and alongside elastic fibres. AGel deposition associates with elastic fibre degradation leading to severe clinical manifestations, such as cutis laxa and angiopathic complications. We analysed elastic fibre pathology in dermal and vascular tissue and plasma samples from 35 patients with AGel amyloidosis and 40 control subjects by transmission electron microscopy, immunohistochemistry and ELISA methods. To clarify the pathomechanism(s) of AGel-related elastolysis, we studied the roles of MMP-2, -7, -9, -12 and -14, TIMP-1 and TGFβ. We found massive accumulation of amyloid fibrils along elastic fibres as well as fragmentation and loss of elastic fibres in all dermal and vascular samples of AGel patients. Fibrils of distinct types formed fibrous matrix. The degradation pattern of elastic fibres in AGel patients was different from the age-related degradation in controls. The elastin of elastic fibres in AGel patients was strongly decreased compared to controls. MMP-9 was expressed at lower and TGFβ at higher levels in AGel patients than in controls. The accumulation of amyloid fibrils with severe elastolysis characterises both dermal and vascular derangement in AGel amyloidosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。