Downregulation of neuroligin1 ameliorates postoperative pain through inhibiting neuroligin1/postsynaptic density 95-mediated synaptic targeting of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluA1 subunits in rat dorsal horns

神经连接素 1 的下调可通过抑制大鼠背角中神经连接素 1/突触后密度 95 介导的 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯受体 GluA1 亚基的突触靶向来改善术后疼痛

阅读:5
作者:Ruijuan Guo, Huili Li, Xueyang Li, Zhaojing Xue, Yuqing Sun, Danxu Ma, Yun Guan, Junfa Li, Ming Tian, Yun Wang

Abstract

Neuroligin1 is an important synaptic cell adhesion molecule that modulates the function of synapses through protein-protein interactions. Yet, it remains unclear whether the regulation of synaptic transmission in the spinal cord by neruoligin1 contributes to the development of postoperative pain. In a rat model of postoperative pain induced by plantar incision, we conducted Western blot study to examine changes in the expression of postsynaptic membrane of neuroligin1, postsynaptic density 95 (PSD-95), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluA1 and GluA2 subunits in the spinal cord dorsal horn after injury. The interaction between neuroligin1 and PSD-95 was further determined by using coimmunoprecipitation. Protein levels of neuroligin1 and GluA1, but not GluA2 and PSD-95, were significantly increased in the postsynaptic membrane of the ipsilateral dorsal horn at 3 h and 1 day after incision, as compared to that in control group (naïve). A greater amount of PSD-95 was coimmunoprecipitated with neuroligin1 at 3 h after incision than that in the control group. Intrathecal administration of small interfering RNAs (siRNAs) targeting neuroligin1 suppressed the expression of neuroligin1 in the spinal cord. Importantly, pretreatment with intrathecal neuroligin1 siRNA2497, but not scrambled siRNA or vehicle, prevented the upregulation of GluA1 expression at 3 h after incision, inhibited the enhanced neuroligin1/PSD-95 interaction, and attenuated postoperative pain. Together, current findings suggest that downregulation of spinal neuroligin1 expression may ameliorate postoperative pain through inhibiting neuroligin1/PSD-95 interaction and synaptic targeting of GluA1 subunit. Accordingly, spinal neuroligin1 may be a potential new target for postoperative pain treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。