Unraveling the action mechanism of polygonum cuspidatum by a network pharmacology approach

通过网络药理学方法阐明虎杖的作用机制

阅读:5
作者:Boyu Pan, Xiaona Shi, Tingting Ding, Liren Liu

Abstract

As a popular Chinese herbal medicine (CHM), polygonum cuspidatum is widely used to treat various diseases in China. However, its biological function and action mechanism have yet to be systematically explored. In the present study, we first identified 14 potential active ingredients of polygonum cuspidatum using the TCMSP server and then conducted an in silico target prediction for these ingredients using PharmMapper. The subsequent KEGG pathway enrichment analysis of the 57 identified potential targets revealed that they were closely associated with cancer and gynecological disorders. Furthermore, a protein-protein interaction network of these targets was constructed using STRING and Cytoscape, through which 11 core targets were excavated according to degree, a key topological parameter. Meanwhile, we developed a novel formula, in which the "R value" is determined by average shortest path length and closeness centrality, two other key topological parameters, to evaluate the reliability of these predicted core targets. Intriguingly, among the top 10 core targets excavated using this new formula, 7 overlapped with the former 11 core targets, showing a good consistency in these core targets between the different prediction algorithms. Next, 7 ingredients were identified/validated from the crude extract of polygonum cuspidatum using UPLC-MS/MS. Noteworthy, 6 potential targets predicted for these 7 ingredients overlapped with the 7 core targets excavated from the previous in silico analyses. Further molecular docking and druggability analyses suggested that polydatin may play a pivotal role in manifesting the therapeutic effects of polygonum cuspidatum. Finally, we carried out a series of cell functional assays, which validated the anti-proliferative effects of polygonum cuspidatum on gynecological cancer cells, thus demonstrating our network pharmacology approach is reliable and powerful enough to guide the CHM mechanism study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。