Clcn3 deficiency ameliorates high-fat diet-induced obesity and improves metabolism in mice

Clcn3 缺乏可改善高脂饮食引起的肥胖并改善小鼠的新陈代谢

阅读:5
作者:Sirui Duan #, Bo Li #, Shiyu Cui, Yaoyao Chen, Ying He, Lihong Fan

Conclusion

Modulation of Clcn3 may provide an appealing therapeutic target for obesity and associated metabolic syndrome.

Methods

The mice were divided into 4 different groups: Clcn3+/+ mice + high-fat diet (HFD), Clcn3-/- mice + HFD, Clcn3+/+ mice + normal diet (ND), Clcn3-/- mice + ND, and fed for 16 weeks. After the glucose tolerance test and insulin tolerance test, peripheral blood and adipose tissues were collected. Moreover, we performed transcriptome sequencing for the epididymal white adipose tissue from Clcn3+/+ and Clcn3-/- mice with the high-fat diet. Western blotting verified the changes in protein levels of relevant metabolic genes.

Objective

Obesity is defined as excess body fat and is a current health epidemic associated with increased risk for type 2 diabetes and cardiovascular disease. The ClC-3 chloride channel/antiporter, encoded by the Clcn3, is associated with some diseases, like carcinoma, nervous system diseases, and metabolic diseases. To verify the relationship between the Clcn3 and weight including metabolic changes, searching for a new target for metabolic therapy of obesity, we designed the experiment.

Results

We found that the Clcn3-/- mice had lower body weight and visceral fat, refining glucose and lipid metabolism in HFD-induced mice, but had no effect in normal diet mice. RNA-seq and Western blotting indicated that Clcn3 deficiency may inhibit obesity through the AMPK-UCP1 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。