Detection of α-synuclein amyloidogenic aggregates in vitro and in cells using light-switching dipyridophenazine ruthenium(II) complexes

使用光开关二吡啶并吩嗪钌 (II) 配合物检测体外和细胞中的 α-突触核蛋白淀粉样变性聚集体

阅读:6
作者:Nathan P Cook, Kiri Kilpatrick, Laura Segatori, Angel A Martí

Abstract

Protein aggregation is the hallmark of a number of neurodegenerative diseases including Parkinson's and Huntington's diseases. There is a significant interest in understanding the molecular mechanisms involved in the self-association and fibrillization of monomeric soluble proteins into insoluble deposits in vivo and in vitro. Probes with novel properties, such as red-shifted emission, large Stokes shifts, and high photostability, are desirable for a variety of protein aggregation studies. To respond to the increasing need for aggregation-responsive compounds suitable to cellular studies, we present a ruthenium(II) dipyridophenazine derivative, [Ru(phen)(2)dppz](2+) (phen =1,10-phenanthroline, dppz = dipyrido[3,2-a:2'.3'-c]phenazine), to study aggregation of α-synuclein (αS), which is associated with the development of Parkinson's disease. We demonstrated the use of [Ru(phen)(2)dppz](2+) to monitor αS fibril formation in real-time and to detect and quantify αS aggregates in neuroglioma cells, thereby providing a novel molecular tool to study protein deposition diseases in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。