Background
Neurofilament light (NfL) has previously been highlighted as a potential biomarker for Huntington's Disease (HD) using cross-sectional analyses. Our study
Methods
108 participants [78 individuals with the HD mutation, and 30 healthy controls (HC)] were included in this study. Individuals with the HD mutation were categorised separately by both HD-Integrated Staging System (HD-ISS) (Study 1) and PIN score-Approximated Staging System (PASS) (Study 2) criteria. Plasma NfL trajectories were examined using Mixed Linear Modeling (MLM); associations with symptom presentation were assessed using Spearman's rho correlations. Findings: The MLM coefficients for disease stage (HD-ISS β = 32.73, p < 0.0001; PASS β = 33.00, p < 0.0001) and disease stage∗time (HD-ISS β = 7.85, p = 0.004; PASS β = 6.58, p = 0.0047) suggest these are significant contributors to plasma NfL levels. In addition, the plasma NfL rate of change varied significantly across time (HD-ISS β = 3.14, p = 0.04; PASS β = 2.94, p = 0.050). The annualised rate of change was 8.32% for HC; 10.55%, 12.75% and 15.62% for HD-ISS Stage ≤1, Stage 2, and Stage 3, respectively; and 12.13%, 10.46%, 10.33%, 17.52%, for PASS Stage 0, Stage 1, Stage 2, and Stage 3, respectively. Plasma NfL levels correlated with the Symbol Digit Modalities Test (SDMT) in HD-ISS Stage ≤1, and both SDMT and Total Motor Score in Stage 3 (ps < 0.01). Interpretation: Our findings suggest that plasma NfL levels increase linearly across earlier disease stages, correlating with the cognitive SDMT measure. Thereafter, an increase or surge in plasma NfL levels, paired with correlations with both cognitive and motor measures, suggest a late acceleration in clinical and pathological progression. Funding: NIH (NS111655); the UCSD HDSA CoE; the UCSD ADRC (NIH-NIA P30 AG062429).
