Development of a yeast model to study the contribution of vacuolar polyphosphate metabolism to lysine polyphosphorylation

开发酵母模型来研究液泡多磷酸盐代谢对赖氨酸多磷酸化的贡献

阅读:11
作者:Cristina Azevedo, Yann Desfougères, Yannasittha Jiramongkol, Hamish Partington, Sasanan Trakansuebkul, Jyoti Singh, Nicole Steck, Henning J Jessen, Adolfo Saiardi

Abstract

A recently-discovered protein post-translational modification, lysine polyphosphorylation (K-PPn), consists of the covalent attachment of inorganic polyphosphate (polyP) to lysine residues. The nonenzymatic nature of K-PPn means that the degree of this modification depends on both polyP abundance and the amino acids surrounding the modified lysine. K-PPn was originally discovered in budding yeast (Saccharomyces cerevisiae), in which polyP anabolism and catabolism are well-characterized. However, yeast vacuoles accumulate large amounts of polyP, and upon cell lysis, the release of the vacuolar polyP could nonphysiologically cause K-PPn of nuclear and cytosolic targets. Moreover, yeast vacuoles possess two very active endopolyphosphatases, Ppn1 and Ppn2, that could have opposing effects on the extent of K-PPn. Here, we characterized the contribution of vacuolar polyP metabolism to K-PPn of two yeast proteins, Top1 (DNA topoisomerase 1) and Nsr1 (nuclear signal recognition 1). We discovered that whereas Top1-targeting K-PPn is only marginally affected by vacuolar polyP metabolism, Nsr1-targeting K-PPn is highly sensitive to the release of polyP and of endopolyphosphatases from the vacuole. Therefore, to better study K-PPn of cytosolic and nuclear targets, we constructed a yeast strain devoid of vacuolar polyP by targeting the exopolyphosphatase Ppx1 to the vacuole and concomitantly depleting the two endopolyphosphatases (ppn1Δppn2Δ, vt-Ppx1). This strain enabled us to study K-PPn of cytosolic and nuclear targets without the interfering effects of cell lysis on vacuole polyP and of endopolyphosphatases. Furthermore, we also define the fundamental nature of the acidic amino acid residues to the K-PPn target domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。