Fermentation of dihydroxyacetone by engineered Escherichia coli and Klebsiella variicola to products

利用工程大肠杆菌和克雷伯氏菌发酵二羟基丙酮以生产产品

阅读:7
作者:Liang Wang, Diane Chauliac, Mun Su Rhee, Anushadevi Panneerselvam, Lonnie O Ingram, K T Shanmugam

Abstract

Methane can be converted to triose dihydroxyacetone (DHA) by chemical processes with formaldehyde as an intermediate. Carbon dioxide, a by-product of various industries including ethanol/butanol biorefineries, can also be converted to formaldehyde and then to DHA. DHA, upon entry into a cell and phosphorylation to DHA-3-phosphate, enters the glycolytic pathway and can be fermented to any one of several products. However, DHA is inhibitory to microbes due to its chemical interaction with cellular components. Fermentation of DHA to d-lactate by Escherichia coli strain TG113 was inefficient, and growth was inhibited by 30 g⋅L-1 DHA. An ATP-dependent DHA kinase from Klebsiella oxytoca (pDC117d) permitted growth of strain TG113 in a medium with 30 g⋅L-1 DHA, and in a fed-batch fermentation the d-lactate titer of TG113(pDC117d) was 580 ± 21 mM at a yield of 0.92 g⋅g-1 DHA fermented. Klebsiella variicola strain LW225, with a higher glucose flux than E. coli, produced 811 ± 26 mM d-lactic acid at an average volumetric productivity of 2.0 g-1⋅L-1⋅h-1 Fermentation of DHA required a balance between transport of the triose and utilization by the microorganism. Using other engineered E. coli strains, we also fermented DHA to succinic acid and ethanol, demonstrating the potential of converting CH4 and CO2 to value-added chemicals and fuels by a combination of chemical/biological processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。