Conclusion
Mechanistically, quercetin inhibited proliferation and angiogenesis, promoted cancer cell apoptosis, and finally improved locomotor activity and survival by inhibiting the glycolytic metabolism in GBM tissues, suggesting that quercetin is a potential drug for the treatment of GBM.
Methods
Cell viability and colony formation assays were performed by CCK-8 and clone-formation assays. GBM xenograft mouse model was established to evaluate the tumor burden of mice treated with or without quercetin. To investigate spontaneous locomotor activity and survival rate of mice, orthotopic transplantation was performed through brain stereotaxic injection of U87 cells. Seahorse and Western blot were performed to examine the alteration of glycolytic metabolism GBM.
Results
We found that quercetin administration inhibited GBM cell proliferation and promoted cell apoptosis in vitro. Quercetin suppressed GBM growth, restored spontaneous locomotor activity, and improved survival rate without toxicity to peripheral organs in vivo. Moreover, quercetin inhibited glycolytic metabolism in tumor tissue.
