Engineered macrophage-biomimetic versatile nanoantidotes for inflammation-targeted therapy against Alzheimer's disease by neurotoxin neutralization and immune recognition suppression

设计的巨噬细胞仿生多功能纳米解毒剂通过神经毒素中和和免疫识别抑制针对阿尔茨海默病进行炎症靶向治疗

阅读:6
作者:Meng Cheng, Caihua Ye, Chunxiao Tian, Dongju Zhao, Haonan Li, Zuhao Sun, Yuyang Miao, Qiang Zhang, Junping Wang, Yan Dou

Abstract

Immune recognition of excessive neurotoxins by microglia is a trigger for the onset of neuroinflammation in the brain, leading to neurodegeneration in Alzheimer's disease (AD). Blocking active recognition of microglia while removing neurotoxins holds promise for fundamentally alleviating neurotoxin-induced immune responses, but is very challenging. Herein, an engineered macrophage-biomimetic versatile nanoantidote (OT-Lipo@M) is developed for inflammation-targeted therapy against AD by neurotoxin neutralization and immune recognition suppression. Coating macrophage membranes can not only endow OT-Lipo@M with anti-phagocytic and inflammation-tropism capabilities to target inflammatory lesions in AD brain, but also efficiently reduce neurotoxin levels to prevent them from activating microglia. The loaded oxytocin (OT) can be slowly released to downregulate the expression of immune recognition site Toll-like receptor 4 (TLR4) on microglia, inhibiting TLR4-mediated pro-inflammatory signalling cascade. Benefiting from this two-pronged immunosuppressive strategy, OT-Lipo@M exhibits outstanding therapeutic effects on ameliorating cognitive deficits, inhibiting neuronal apoptosis, and enhancing synaptic plasticity in AD mice, accompanied by the delayed hippocampal atrophy and brain microstructural disruption by in vivo 9.4T MR imaging. This work provides new insights into potential AD therapeutics targeting microglia-mediated neuroinflammation at the source.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。