Study on Therapeutic Action and Mechanism of TMZ Combined with RITA Against Glioblastoma

TMZ联合RITA治疗胶质母细胞瘤的作用及机制研究

阅读:4
作者:Qinghua Wu, Zhongxu Cao, Weiwei Xiao, Li Zhu, Qian Xie, Ling Li, Bao Zhang, Wei Zhao

Aims

Glioblastoma multiforme (GBM) is a malignant and aggressive central nervous system (CNS) tumor with high mortality and low survival rate. Effective treatment of GMB is a challenge worldwide. Temozolomide (TMZ) is a drug used to treat GBM, while the survival period of GBM patients with positive treatment remains less than 15 months. Reactivating p53 and Inducing Tumor Apoptosis (RITA) is a novel potential anti-cancer small molecular drug. Thus, it is essential to discover novel targets or develop effective drugs combination strategy to treat GBM.

Background/aims

Glioblastoma multiforme (GBM) is a malignant and aggressive central nervous system (CNS) tumor with high mortality and low survival rate. Effective treatment of GMB is a challenge worldwide. Temozolomide (TMZ) is a drug used to treat GBM, while the survival period of GBM patients with positive treatment remains less than 15 months. Reactivating p53 and Inducing Tumor Apoptosis (RITA) is a novel potential anti-cancer small molecular drug. Thus, it is essential to discover novel targets or develop effective drugs combination strategy to treat GBM.

Conclusion

Taken together, the RITA suppressed the cell proliferation in glioblastoma via targeting ASK1.

Methods

The U87 cells and U251 cells (p53 mutated) were treated with DMSO and 1, 5,10, 20 μM RITA, TMZ, RITA+TMA or PFT-α. The cell proliferation was measured using the MTS cell proliferation assay. The cell apoptosis was analyzed by Annexin V-FITC/PI Apoptosis Detection Kit. The key protein expression level was evaluated by WB. Molecular docking and molecular dynamics (MD) simulation methods were applied to simulate the interaction between RITA and ASK1.

Results

Herein, we found that combination RITA and TMZ effectively inhibited the proliferation of U87 cells and promoted the apoptosis of U87 cells. Then the mechanism of RITA and TMZ treating GBM were further studied by detecting the expression of the proteins associating with p53 pathway, such as ASK1, Bax, and so on. RITA bound to the amino acids residues in the activation domain of the ASK1, then induced the conformation change of ASK1 receptor, activated ASK1 and caused a series of signal transduction, further resulted in the physiological effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。