Preclinical evaluation of thermoreversible triamcinolone acetonide hydrogels for drug delivery to the inner ear

热可逆性曲安奈德水凝胶用于内耳药物输送的临床前评估

阅读:4
作者:Elisabeth Engleder, Clemens Honeder, Julia Klobasa, Michael Wirth, Christoph Arnoldner, Franz Gabor

Abstract

Intratympanic glucocorticoid therapy aims to reduce the side effects associated with systemic long-time therapy of inner ear diseases or traumata after cochlear implantation. For that purpose, thermoreversible hydrogels being fluid at room temperature but solid at body temperature are known to be appropriate drug delivery systems. In this work, the two key parameters sol-gel transition time and temperature of Poloxamer 407 (POX 407) based hydrogels containing oto-compatible micronized triamcinolone acetonide (TAAc) were evaluated by rheological experiments varying the concentrations of the different compounds. A 20% POX 407 hydrogel in PBS containing 30% TAAc emerged as the most appropriate formulation. Oscillation-rotation-oscillation studies at two temperature levels were found to be an useful in-vitro test system for the hydrogel which revealed sufficient storage stability at 4 °C, injectability of the sol, solidification within 20s at body temperature and persistent stiffness indicating prolonged adhesion at the round window membrane. According to the in-vitro release studies using the Transwell™ system, absorption of the poor water soluble TAAc is partly due to the low amount of dissolved drug but predominantly due to micellar transport resulting in a cumulative release of 262.6±13.4 μg TAAc within one week followed by a sustained release of 193.1±8.3 μg TAAc within the next three weeks. Thus, the formation of POX 407 micelles is the basis not only for gel formation but also absorptivity of TAAc. All in all, fine tuned rheological experiments and absorption studies emerged as useful tools for preclinical evaluation of intratympanally administered hydrogels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。