The Toll like receptor 4 ligand cold-inducible RNA-binding protein as vaccination platform against cancer

Toll 样受体 4 配体冷诱导 RNA 结合蛋白作为抗癌疫苗平台

阅读:8
作者:Lorea Villanueva, Leyre Silva, Diana Llopiz, Marta Ruiz, Tamara Iglesias, Teresa Lozano, Noelia Casares, Sandra Hervas-Stubbs, María José Rodríguez, José L Carrascosa, Juan José Lasarte, Pablo Sarobe

Abstract

Tumor infiltrating lymphocytes have been associated with a better prognostic and with higher response rates in patients treated with checkpoint inhibiting antibodies, suggesting that strategies promoting tumor inflammation may enhance the efficacy of these currently available therapies. Our aim was thus to develop a new vaccination platform based on cold-inducible RNA binding protein (CIRP), an endogenous TLR4 ligand generated during inflammatory processes, and characterize whether it was amenable to combination with checkpoint inhibitors. In vitro, CIRP induced dendritic cell activation, migration and enhanced presentation of CIRP-bound antigens to T-cells. Accordingly, antigen conjugation to CIRP conferred immunogenicity, dependent on immunostimulatory and antigen-targeting capacities of CIRP. When applied in a therapeutic setting, vaccination led to CD8-dependent tumor rejection in several tumor models. Moreover, immunogenicity of this vaccination platform was enhanced not only by combination with additional adjuvants, but also with antibodies blocking PD-1/PD-L1, CTLA-4 and IL-10, immunosuppressive molecules usually present in the tumor environment and also induced by the vaccine. Therefore, priming with a CIRP-based vaccine combined with immune checkpoint-inhibiting antibodies rejected established B16-OVA tumors. Finally, equivalent activation and T-cell stimulatory effects were observed when using CIRP in vitro with human cells, suggesting that CIRP-based vaccination strategies could be a valuable clinical tool to include in combinatorial immunotherapeutic strategies in cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。