Self double-stranded (ds)DNA induces IL-1β production from human monocytes by activating NLRP3 inflammasome in the presence of anti-dsDNA antibodies

在抗 dsDNA 抗体存在的情况下,自身双链 (ds)DNA 通过激活 NLRP3 炎症小体诱导人类单核细胞产生 IL-1β

阅读:14
作者:Min Sun Shin, Youna Kang, Naeun Lee, Elizabeth R Wahl, Sang Hyun Kim, Ki Soo Kang, Rossitza Lazova, Insoo Kang

Abstract

The pathogenic hallmark of systemic lupus erythematosus is the autoimmune response against self nuclear Ags, including dsDNA. The increased expression of the proinflammatory cytokine IL-1β has been found in the cutaneous lesion and PBMCs from lupus patients, suggesting a potential involvement of this cytokine in the pathogenesis of lupus. IL-1β is produced primarily by innate immune cells such as monocytes and can promote a Th17 cell response, which is increased in lupus. IL-1β production requires cleaving pro-IL-β into IL-1β by the caspase-1-associated multiprotein complex called inflammasomes. In this study we show that self dsDNA induces IL-1β production from human monocytes dependent on serum or purified IgG containing anti-dsDNA Abs by activating the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Reactive oxygen species (ROS) and K(+) efflux were involved in this activation. Knocking down the NLRP3 or inhibiting caspase-1, ROS, and K(+) efflux decreased IL-1β production. Supernatants from monocytes treated with a combination of self dsDNA and anti-dsDNA Ab(+) serum promoted IL-17 production from CD4(+) T cells in an IL-1β-dependent manner. These findings provide new insights in lupus pathogenesis by demonstrating that self dsDNA together with its autoantibodies induces IL-1β production from human monocytes by activating the NLRP3 inflammasome through inducing ROS synthesis and K(+) efflux, leading to the increased Th17 cell response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。