Hepatoprotective effect of resveratrol against ethanol-induced oxidative stress through induction of superoxide dismutase in vivo and in vitro

白藜芦醇在体内和体外通过诱导超氧化物歧化酶对乙醇诱导的氧化应激发挥保肝作用

阅读:7
作者:Wei-Ming Chen, Lee-Hsin Shaw, Pey-Jium Chang, Shui-Yi Tung, Te-Sheng Chang, Chein-Heng Shen, Yung-Yu Hsieh, Kuo-Liang Wei

Abstract

The present study aimed to investigate the hepatoprotective effect of resveratrol (RSV) against ethanol-induced oxidative stress in vivo, and investigate the underlying mechanisms by which RSV exerts its anti-oxidative effects on hepatic cells. C57BL/6J mice were divided into four groups: Untreated control, ethanol-treated, RSV-treated, and ethanol + RSV-treated. The plasma lipid profile, hepatic lipid accumulation and antioxidative enzyme activities were analyzed. HepG2 cells were used as a cellular model to analyze the effects of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and peroxisome proliferator-activated receptors (PPARs) in the RSV-mediated protection of ethanol-induced oxidative stress. In C57BL/6J mice, ethanol caused a significant increase in plasma triglyceride levels and hepatic lipid accumulation (P<0.05), whereas RSV notably increased SOD activity. In HepG2 cells, SOD activity was enhanced in the RSV-treated HepG2 cells, whereas the activity of CAT and GPx was not affected. Western blot and quantitative polymerase chain reaction analyses demonstrated that RSV significantly increased SOD protein and mRNA expression levels (P<0.05). Using a transient transfection assay, PPARγ was observed to participate in the regulation of SOD gene expression in RSV-administered HepG2 cells. To conclude, the results from the present study suggest that RSV may contribute towards the protection of hepatic cells from ethanol-induced oxidative stress via the induction of SOD activity and gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。