Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism

组蛋白低乙酰化激活基因受到乙酰辅酶 A 和染色质介导的机制抑制

阅读:4
作者:Swati Mehrotra, Luciano Galdieri, Tiantian Zhang, Man Zhang, Lucy F Pemberton, Ales Vancura

Abstract

Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation. These histone hypoacetylation-activated genes (HHAAG) are normally repressed during exponential growth, when the cellular level of acetyl-CoA is high and global histone acetylation is also high. The HHAAG are induced during diauxic shift, when the levels of acetyl-CoA and global histone acetylation decrease. The histone hypoacetylation-induced activation of HHAAG is independent of Msn2/Msn4. The repression of HSP12, one of the HHAAG, is associated with well-defined nucleosomal structure in the promoter region, while histone hypoacetylation-induced activation correlates with delocalization of positioned nucleosomes or with reduced nucleosome occupancy. Correspondingly, unlike the majority of yeast genes, HHAAG are transcriptionally upregulated when expression of histone genes is reduced. Taken together, these results suggest a model in which histone acetylation is required for proper positioning of promoter nucleosomes and repression of HHAAG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。