Legionella pneumophila temporally regulates the activity of ADP/ATP translocases by reversible ADP-ribosylation

嗜肺军团菌通过可逆的 ADP 核糖基化暂时调节 ADP/ATP 转位酶的活性

阅读:5
作者:Jiaqi Fu, Pengwei Li, Hongxin Guan, Dan Huang, Lei Song, Songying Ouyang, Zhao-Qing Luo

Abstract

The mitochondrion is an important signaling hub that governs diverse cellular functions, including metabolism, energy production, and immunity. Among the hundreds of effectors translocated into host cells by the Dot/Icm system of Legionella pneumophila, several are targeted to mitochondria but the function of most of them remains elusive. Our recent study found that the effector Ceg3 inhibits the activity of ADP/ATP translocases (ANTs) by ADP-ribosylation (ADPR). Here, we show that the effect of Ceg3 is antagonized by Larg1, an effector encoded by lpg0081, a gene that is situated next to ceg3. Larg1 functions to reverse Ceg3-mediated ADPR of ANTs by cleaving the N-glycosidic bond between the ADPR moiety and the modified arginine residues in ANTs, leading to restoration of their activity in ADP/ATP exchange. Structural analysis of Larg1 and its complex with ADPR reveals that this ADPR glycohydrolase harbors a unique macrodomain that catalyzes the removal of ADPR modification on ANTs. Our results also demonstrate that together with Ceg3, Larg1 imposes temporal regulation of the activity of ANTs by reversible ADPR during L. pneumophila infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。