Carcinoembryonic antigen-related cell adhesion molecule 1 negatively regulates granulocyte colony-stimulating factor production by breast tumor-associated macrophages that mediate tumor angiogenesis

癌胚抗原相关细胞黏附分子1负调控乳腺肿瘤相关巨噬细胞产生的粒细胞集落刺激因子,而这些巨噬细胞介导肿瘤血管生成。

阅读:1
作者:Sridhar Samineni ,Zhifang Zhang, John E Shively

Abstract

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell adhesion molecule expressed on epithelial cells and activated immune cells, is downregulated in many cancers and plays a role in inhibition of inflammation in part by inhibition of granulocyte colony-stimulating factor (G-CSF) production by myeloid cells. As macrophages are associated with a poor prognosis in breast cancer, but play important roles in normal breast, we hypothesized that CEACAM1 downregulation would lead to tumor promotion under inflammatory conditions. Cocultures of proinflammatory M1 macrophages with CEACAM1 negative MCF7 breast cells produced high levels of G-CSF (10 ng/mL) compared to CEACAM1-transfected MCF7/4S cells (1 ng/mL) or anti-inflammatory M2 macrophage cocultures (0.5 or 0.1 ng/mL, MCF7 or MCF7/4S, respectively). The expression of CEACAM1 on M1s was much greater than for M2s and was observed only in cocultures with either MCF7 or MCF7/4S cells. When M1 macrophages were mixed with MCF7 cells and implanted in murine mammary fat pads of nonobese diabetic/severe combined immunodeficient mice, tumor size and blood vessel density were significantly greater than MCF7 or MCF7/4S only tumors which were hardly detected after 8 weeks of growth. In contrast, M1 cells had a much reduced effect on MCF7/4S tumor growth and blood vessel density, indicating that the tumor inhibitory effect of CEACAM1 is most likely related to its anti-inflammatory action on inflammatory macrophages. These results support our previous finding that CEACAM1 inhibits both G-CSF production by myeloid cells and G-CSF-stimulated tumor angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。