Schistosoma japonicum cystatin suppresses osteoclastogenesis via manipulating the NF‑κB signaling pathway

日本血吸虫胱抑素通过操纵 NF-κB 信号通路抑制破骨细胞生成

阅读:5
作者:Yu Chen #, Bangguo Wei #, Panpan Xu #, Huadong Tang, Langlang Yang, Yuhang Wang, Yingxiao Fu, Xiaodi Yang, Yingji Mao

Abstract

Abnormal osteoclastic activation and secretion of cysteine proteinases result in excessive bone resorption, which is one of the primary factors in the development of bone metabolic disorders, such as rheumatoid arthritis and osteoporosis. Mammalian cystatins have been demonstrated to restrain osteoclastic bone resorption and to alleviate severe osteolytic destruction via blocking the activity of cysteine proteinases. However, the specific effects of parasite cystatins on the formation and function of osteoclasts remain unclear. The purpose of the current study was to explore the effects of cystatins from Schistosoma japonicum (Sj‑Cys) on macrophage colony‑stimulating factor (M‑CSF) and receptor activator of NF‑κB ligand (RANKL)‑induced osteoclast differentiation, as well as the underlying molecular mechanisms. Recombinant Sj‑Cys (rSj‑Cys) dose‑dependently restrained osteoclast formation, with a half‑maximal inhibitory concentration (IC50) value of 0.3 µM, and suppressed osteoclastic bone resorptive capability in vitro. The findings were based on tartrate resistant acid phosphatase (TRAP) staining and bone resorption assays, respectively. However, the cell viability assay showed that the repression of rSj‑Cys on osteoclast formation did not depend on effects on cell viability or apoptosis. Based on the results of reverse transcription‑quantitative PCR and western blot analysis, it was found that rSj‑Cys downregulated the expression levels of osteoclastogenesis‑related genes and proteins, by interfering with M‑CSF and RANKL‑induced NF‑κB signaling and downstream transcription factors during early‑phase osteoclastogenesis. Overall, the results of the present study revealed that rSj‑Cys exerted an inhibitory role in osteoclast differentiation and could be a prospective biotherapeutic candidate for the treatment and prevention of bone metabolic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。