Conclusion
PLX8725 demonstrates promising in vivo activity against PDX models of uLMS harboring GOF alterations in the MAP2K4 gene with tolerable toxicity. Phase I trials of PLX8725 in advanced, recurrent, chemotherapy-resistant uLMS patients are warranted.
Methods
Two fully characterized uLMS (i.e., LEY-11 and LEY-16) were grafted into female CB-17/SCID mice. Treatments with control vehicle or PLX8725 (50 mg/kg) were given via oral gavage daily on weekdays for up to 60 days. Tumor volume differences were calculated with two-way ANOVA. Pharmacokinetic (PK) and mechanistic studies of PLX8725 in uLMS PDX models were also performed.
Results
Both uLMS tumors evaluated demonstrated GOF in MAP2K4 (i.e., 3 CNV in both LEY-11 and LEY-16). Tumor growth inhibition was significantly greater in both PDX LEY-11 and PDX LEY-16 treated with PLX8725 when compared to controls (p < 0.001). Median overall survival was also significantly longer in both PDX LEY-11 (p = 0.0047) and PDX LEY-16 (p = 0.0058) treatment cohorts when compared to controls. PLX8725 oral treatment was well tolerated, and PK studies demonstrated that oral PLX8725 gives extended exposure in mice. Ex vivo tumor samples after PLX8725 exposure decreased phosphorylated-ATR, JNK and p38, and increased expression of apoptotic molecules on western blot.
