TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury

TRIM21 泛素化 GPX4 并促进铁死亡从而加重缺血/再灌注引起的急性肾损伤

阅读:5
作者:Xiaolin Sun, Ning Huang, Peng Li, Xinyi Dong, Jiahong Yang, Xuemei Zhang, Wei-Xing Zong, Shenglan Gao, Hong Xin

Aims

This study aims to verify the molecular mechanism that Tripartite motif containing 21 (TRIM21) promotes ubiquitination degradation of glutathione peroxidase 4 (GPX4) by regulating ferroptosis, and to discuss the feasibility of TRIM21 as a new therapeutic target for acute kidney injury (AKI). Materials and

Methods

Ischemia-reperfusion (I/R)-AKI model was constructed using Trim21+/+ and Trim21-/- mice, and the expression of markers associated with kidney injury and ferroptosis were evaluated. HK-2 cells were treated by RSL3 and Erastin, and a hypoxia/reoxygenation (H/R) model was constructed to simulate I/R injury in vivo. Key findings: In vivo, TRIM21 is highly expressed in I/R kidney tissues. Loss of TRIM21 alleviated I/R-AKI and improved renal function. The upregulation of GPX4, a key ferroptosis regulator, and the mild mitochondrial damage suggested that loss of TRIM21 had a negative regulation of ferroptosis. In vitro, TRIM21 was highly expressed in H/R models, and overexpression of TRIM21 in HK-2 cells increased ROS production, promoted intracellular iron accumulation, and boosted cellular sensitivity to RSL3 and Erastin. Mechanistically, we confirmed that GPX4 is a substrate of TRIM21 and can be degraded by TRIM21-mediated ubiquitination, suggesting that inhibiting TRIM21 attenuates ferroptosis. A JAK2 inhibitor Fedratinib downregulated TRIM21 expression and reduced damage both in vivo and in vitro, which is correlated with the upregulation of GPX4. Significance: Our study showed that loss of TRIM21 could alleviate ferroptosis induced by I/R, revealed the mechanism of ubiquitination degradation of GPX4 by TRIM21 and suggested TRIM21 is a potential target for the treatment of AKI.

Significance

Our study showed that loss of TRIM21 could alleviate ferroptosis induced by I/R, revealed the mechanism of ubiquitination degradation of GPX4 by TRIM21 and suggested TRIM21 is a potential target for the treatment of AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。