MiR-143-3p suppresses the progression of ovarian cancer

MiR-143-3p 抑制卵巢癌进展

阅读:6
作者:Haijuan Shi, Huimin Shen, Juan Xu, Shanshan Zhao, Shuzhong Yao, Nan Jiang

Abstract

MicroRNAs (miRNAs) are a class of naturally occurring, small, non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level and participate in various biological processes. Our previous studies suggested that miR-143-3p functions as a tumor suppressor and has a role in the progression of ovarian cancer, in part through the regulation of the tumor promoter. In this study, we found that the mRNA expression level of miR-143-3p was significantly decreased in ovarian cancer tissues, in comparison with normal ovarian tissues by high-throughput miRNA profiling and quantitative RT-PCR. Secondly, we indicated that the up-regulation of miR-143-3p in the ovarian cancer cell lines SKOV3, ES2, and OVCAR3 significantly reduced their proliferation, migration, and invasion. Furthermore, miR-143-3p inhibited the growth of ovarian tumors in vivo in a xenograft experiment. In addition, miR-143-3p down-regulated the expression of transforming growth factor (TGF)-β-activated kinase 1 (TAK1) in human ovarian cancer cells. Therefore, our study indicates that miR-143-3p inhibited the proliferation, migration, and invasion of ovarian cancer cells in vitro, as well as ovarian tumorigenesis in vivo. This inhibitory effect may target TAK1, suggesting a potential application of the miR-143-3p-TAK1 pathway in the clinical diagnosis and treatment of ovarian cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。