Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown

新冠肺炎疫情封锁期间一次排放和二次气溶胶形成对中国城市地区空气污染的影响

阅读:15
作者:Jie Tian, Qiyuan Wang, Yong Zhang, Mengyuan Yan, Huikun Liu, Ningning Zhang, Weikang Ran, Junji Cao

Abstract

Restrictions on human activities were implemented in China to cope with the outbreak of the Coronavirus Disease 2019 (COVID-19), providing an opportunity to investigate the impacts of anthropogenic emissions on air quality. Intensive real-time measurements were made to compare primary emissions and secondary aerosol formation in Xi'an, China before and during the COVID-19 lockdown. Decreases in mass concentrations of particulate matter (PM) and its components were observed during the lockdown with reductions of 32-51%. The dominant contributor of PM was organic aerosol (OA), and results of a hybrid environmental receptor model indicated OA was composed of four primary OA (POA) factors (hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), and coal combustion OA (CCOA)) and two oxygenated OA (OOA) factors (less-oxidized OOA (LO-OOA) and more-oxidized OOA (MO-OOA)). The mass concentrations of OA factors decreased from before to during the lockdown over a range of 17% to 58%, and they were affected by control measures and secondary processes. Correlations of secondary aerosols/ΔCO with Ox (NO2 + O3) and aerosol liquid water content indicated that photochemical oxidation had a greater effect on the formation of nitrate and two OOAs than sulfate; however, aqueous-phase reaction presented a more complex effect on secondary aerosols formation at different relative humidity condition. The formation efficiencies of secondary aerosols were enhanced during the lockdown as the increase of atmospheric oxidation capacity. Analyses of pollution episodes highlighted the importance of OA, especially the LO-OOA, for air pollution during the lockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。