MST1/2 in PDGFRα+ cells negatively regulates TGF-β-induced myofibroblast accumulation in renal fibrosis

PDGFRα+ 细胞中的 MST1/2 负向调节肾纤维化中 TGF-β 诱导的肌成纤维细胞积聚

阅读:6
作者:Yina An, Yaqi Ren, Jing Wang, Jianghua Zang, Min Gao, Haidong Wang, Shuaiyu Wang, Yanjun Dong

Abstract

Injury-induced fibroblast-to-myofibroblast differentiation is a key event of renal fibrosis. Yes-associated protein (YAP), a transcriptional coactivator, plays an important role in fibroblast activation and Smad transcriptional activity to promote transforming growth factor-β (TGF-β)-induced differentiation from fibroblasts to myofibrolasts. Macrophage stimulating 1/2 (MST1/2), a negative regulator of YAP, also increases in fibroblasts by TGF-β stimulation. Here, we examined whether MST1/2, as a negative regulator, attenuated YAP and TGF-β/Smad signaling in fibroblasts to reduce fibrosis. MST1/2 and YAP expression levels increased in platelet-derived growth factor receptor-α (PDGFRα)+ cells of obstructed kidneys following the increase of TGF-β and renal fibrosis after unilateral ureteral obstruction. PDGFRα+ cell-specific knockout of Mst1/2 in mice increased unilateral ureteral obstruction-induced myofibroblast accumulation and fibrosis. In cultured fibroblasts, TGF-β increased YAP and promoted its nucleus entry, but a high dose and prolonged treatment of TGF-β increased the MST1/2 activation to prevent YAP from entering the nucleus. Our results indicate that MST1/2 is a negative feedback signal of TGF-β-induced fibroblast differentiation.NEW & NOTEWORTHY Using a mouse model with macrophage stimulating 1/2 (Mst1/2) double knockout in PDGFRα+ cells and an MST1/2 inhibitor, we demonstrated that MST1/2 acted as a negative feedback signal of transforming growth factor-β-induced fibroblast differentiation. Furthermore, we demonstrated that Hippo-MST as a negative feedback signal can decrease the renal fibrosis process. This finding contributes to our understanding of the mechanism of coregulated renal remodeling after injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。