Curcumol inhibits the growth of xenograft-tumors in mice and the biological activities of pancreatic cancer cells by regulating the miR-21-5p/SMAD7 axis

姜黄素通过调节 miR-21-5p/SMAD7 轴抑制小鼠异种移植肿瘤生长和胰腺癌细胞生物活性

阅读:8
作者:Songlin Fang, Lezeng Wang, Chunmei Luo, Hang Yi, Xiangrui Wang, Bo Ning

Abstract

Anti-cancer effects of curcumol on various cancers have been reported previously. This study focused on investigating the role of curcumol in pancreatic cancer from the molecular perspective. The survival of pancreatic cancer patients with high or low expression of miR-21-5pand the target gene of miR-21-5pwere analyzed by bioinformatics. MiR-21-5p expression in cancer tissues was analyzed by RT-qPCR. Anxenograft-tumor BALB/c nude mice model was established and pancreatic cancer cells were cultured. Later, the mice and cells were further treated with curcumol. The tumor size and weightas well as mice body weight were recorded. The viability, proliferation, migration, and invasion of the cells were evaluated by MTT, colony formation, and transwell assays, respectively. The expressions of molecules in the xenograft-tumor tissues or cells were detected by immunohistochemical assay, Western blot, or RT-qPCR. MiR-21-5p was high-expressed in pancreatic cancer tissues and patients with high expression of miR-21-5p had poor survival. Curcumol inhibited the xenograft-tumor size, tumor weight, and PCNA and miR-21-5p expressions while promoting Cleaved caspase-3 expression in xenograft-tumor tissues. Curcumol inhibited the viability, proliferation, migration, invasion, and miR-21-5p expression, but increased SMAD7 expression in cancer cells. MiR-21-5p overexpression reversed the effect of curcumol on cancer cells, and decreased the E-cadherin expression while elevating the expressions of PCNA, N-cadherin, Vimentin, p-SMAD2, and p-SMAD3 in curcumol-treated cells. The overexpression of SMAD7, a target gene of miR-21-5p, reversed the effect of miR-21-5p on curcumol-treated cells. Curcumol inhibited growth of xenograft-tumors and the biological activities of pancreatic cancer cells by regulating the miR-21-5p/SMAD7 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。