Dynamic behaviors of astrocytes in chemically modified fibrin and collagen hydrogels

化学改性纤维蛋白和胶原水凝胶中星形胶质细胞的动态行为

阅读:7
作者:Negar Seyedhassantehrani, Yongchao Li, Li Yao

Abstract

Astrocytes play a critical role in supporting the normal physiological function of neurons in the central nervous system (CNS). Astrocyte transplantation can potentially promote axonal regeneration and functional recovery after spinal cord injury (SCI). Fibrin and collagen hydrogels provide growth-permissive substrates and serve as carriers for therapeutic cell transplantation into an injured spinal cord. However, the application of fibrin and collagen hydrogels may be limited due to their relatively rapid degradation rate in vivo. In this study, immature astrocytes isolated from neonatal rats were grown in fibrin hydrogels containing aprotinin and collagen hydrogels crosslinked with poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG), and the cell behavior in these hydrogels was studied. The cell viability of astrocytes in the hydrogels was tested using the LIVE/DEAD® assay and the AlamarBlue® assay, and this study showed that astrocytes maintained good viability in these hydrogels. The cell migration study showed that astrocytes migrated in the fibrin and collagen hydrogels, and the migration speed is similar in these hydrogels. The crosslinking of collagen hydrogels with 4S-StarPEG did not change the astrocyte migration speed. However, the addition of aprotinin in the fibrin hydrogel inhibited astrocyte migration. The expression of chondroitin sulfate proteoglycan (CSPG), including NG2, neurocan, and versican, by astrocytes grown in the hydrogels was analyzed by quantitative RT-PCR. The expression of NG2, neurocan, and versican by the cells in these hydrogels was not significantly different.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。