Treatment with paraquat affects the expression of ferroptosis-related genes

百草枯治疗影响铁死亡相关基因的表达

阅读:7
作者:Xiaogang Ge, Qiqi Cai, Sheng Zhang, Xianlong Wu, Pan Ying, Jingjing Ke, Zhihui Yang

Conclusion

ER stress and ferroptosis are critical for PQ-induced cell damage. CHAC1, ATF3, TFRC, and SLC7A11 are essential molecules implicated in PQ-induced ferroptosis that may serve as therapeutic targets for the amelioration of PQ poisoning.

Methods

Data were retrieved from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) related to ferroptosis were identified by Venn plots and analyzed for enrichment. Proteins encoded by these DEGs were studied for interactions. qRT-PCR and western blotting analyses of cultured cells were used to determine the expression of ferroptosis-related DEGs and their corresponding protein levels.

Objective

We aimed to explore the mechanisms underlying paraquat (PQ)-induced damage using cell lines (NCTC1469, TC-1, TCMK-1) and bioinformatic analysis of the GSE153959 dataset. Assessment of changes in the expression of ferroptosis-related genes in cellular damage due to paraquat poisoning and the important value of these genes in the pathogenesis.

Results

We identified 25 DEGs primarily involved in epidermal growth factor receptor signaling, apoptotic signaling pathways, endoplasmic reticulum (ER) stress, and ferroptosis. From these, we uncovered eight ferroptosis-related DEGs, four of which were involved in ER response and regulators of ferroptosis-Chac1 (ChaC glutathione specific gamma-glutamylcyclotransferase 1), Atf3 (activating transcription factor 3), Tfrc (transferrin receptor), and Slc7a11 (solute carrier family 7 member 11). Significant changes in mRNA and protein levels of CHAC1, ATF3, TFRC, and SLC7A11 were confirmed in PQ-exposed cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。