Unfolding dynamics of the mucin SEA domain probed by force spectroscopy suggest that it acts as a cell-protective device

通过力谱探测粘蛋白 SEA 结构域的展开动力学表明,它起着细胞保护装置的作用

阅读:7
作者:Thaher Pelaseyed, Michael Zäch, Asa C Petersson, Frida Svensson, Denny G A Johansson, Gunnar C Hansson

Abstract

MUC1 and other membrane-associated mucins harbor long, up to 1 μm, extended highly glycosylated mucin domains and sea urchin sperm protein, enterokinase and agrin (SEA) domains situated on their extracellular parts. These mucins line luminal tracts and organs, and are anchored to the apical cell membrane by a transmembrane domain. The SEA domain is highly conserved and undergoes a molecular strain-dependent autocatalytic cleavage during folding in the endoplasmic reticulum, a process required for apical plasma membrane expression. To date, no specific function has been designated for the SEA domain. Here, we constructed a recombinant protein consisting of three SEA domains in tandem and used force spectroscopy to assess the dissociation force required to unfold individual, folded SEA domains. Force-distance curves revealed three peaks, each representing unfolding of a single SEA domain. Fitting the observed unfolding events to a worm-like chain model yielded an average contour length of 32 nm per SEA domain. Analysis of forces applied on the recombinant protein revealed an average unfolding force of 168 pN for each SEA domain at a loading rate of 25 nN·s(-1). Thus, the SEA domain may act as a breaking point that can dissociate before the plasma membrane is breached when mechanical forces are applied to cell surfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。