Conclusion
Our results provide evidence that metal ions induce a senescent associated secretory phenotype in synovial fibroblasts that could contribute to the development of adverse local tissue reactions.
Methods
Human synovial fibroblast-like cells were isolated from donors undergoing arthroplasty. DNA content and Alamar blue assay were used to determine cellular viability against exposure to Co and Cr. A beta-galactosidase assay was used to determine the development of cellular senescence. Western blotting and RT-qPCR were employed to determine changes in senescent associated secretory factors, signaling and anti-oxidant enzyme expression. A fluorescent assay was used to measure accumulation of hydrogen peroxide.
Results
We demonstrate that prolonged cobalt exposure results in a downregulation of the enzyme catalase resulting in cytosolic accumulation of hydrogen peroxide, decreased Akt activity and cellular senescence. Senescent fibroblasts demonstrated upregulation of proinflammatory cytokines IL-1β and TNFα in addition to the neurotrophic factor NGF.
