Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat

苏拉明和 NF449 是 IP5K 抑制剂,可破坏肌醇六磷酸介导的 cullin-RING 连接酶调节,并使癌细胞对 MLN4924/pevonedistat 敏感

阅读:4
作者:Xiaozhe Zhang, Shaodong Shi, Yang Su, Xiaoli Yang, Sining He, Xiuyan Yang, Jing Wu, Jian Zhang, Feng Rao

Abstract

Inositol hexakisphosphate (IP6) is an abundant metabolite synthesized from inositol 1,3,4,5,6-pentakisphosphate (IP5) by the single IP5 2-kinase (IP5K). Genetic and biochemical studies have shown that IP6 usually functions as a structural cofactor in protein(s) mediating mRNA export, DNA repair, necroptosis, 3D genome organization, HIV infection, and cullin-RING ligase (CRL) deneddylation. However, it remains unknown whether pharmacological perturbation of cellular IP6 levels affects any of these processes. Here, we performed screening for small molecules that regulate human IP5K activity, revealing that the antiparasitic drug and polysulfonic compound suramin efficiently inhibits IP5K in vitro and in vivo The results from docking experiments and biochemical validations suggested that the suramin targets IP5K in a distinct bidentate manner by concurrently binding to the ATP- and IP5-binding pockets, thereby inhibiting both IP5 phosphorylation and ATP hydrolysis. NF449, a suramin analog with additional sulfonate moieties, more potently inhibited IP5K. Both suramin and NF449 disrupted IP6-dependent sequestration of CRL by the deneddylase COP9 signalosome, thereby affecting CRL activity cycle and component dynamics in an IP5K-dependent manner. Finally, nontoxic doses of suramin, NF449, or NF110 exacerbate the loss of cell viability elicited by the neddylation inhibitor and clinical trial drug MLN4924/pevonedistat, suggesting synergistic ef-fects. Suramin and its analogs provide structural templates for designing potent and specific IP5K inhibitors, which could be used in combination therapy along with MLN4924/pevonedistat. IP5K is a potential mechanistic target of suramin, accounting for suramin's therapeutic effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。