Neutrophils Enhance Their Own Influx to Sites of Bacterial Infection via Endosomal TLR-Dependent Cxcl2 Production

中性粒细胞通过内体 TLR 依赖性 Cxcl2 生成增强自身向细菌感染部位的流入

阅读:6
作者:Germana Lentini, Agata Famà, Carmelo Biondo, Nastaran Mohammadi, Roberta Galbo, Giuseppe Mancuso, Daniela Iannello, Sebastiana Zummo, Miriam Giardina, Giuseppe Valerio De Gaetano, Giuseppe Teti, Concetta Beninati, Angelina Midiri

Abstract

The influx of neutrophils to infection sites is a fundamental step in host defenses against the frequent human pathogen group B Streptococcus (GBS) and other extracellular bacteria. Using a mouse model of GBS-induced peritonitis, we show in this study that the chemokines Cxcl1 and Cxcl2 play distinctive roles in enhancing the recruitment and the antibacterial activities of neutrophils in a manner that is linked to differences in the cellular sources of these mediators. Cell depletion experiments demonstrated that neutrophils make a significant contribution to the in vivo production of Cxcl2 but not Cxcl1. In vitro, neutrophils responded weakly to LPS but released high levels of Cxcl2 after stimulation with GBS or other bacteria. Neutrophil-derived Cxcl2 acted in an autocrinous manner to increase its own production and to enhance antibacterial activities, including the release of oxygen radicals. In both neutrophils and macrophages, the production of Cxcl1/2 largely required the presence of functional UNC93B1, a chaperone protein involved in signaling by endosomal TLRs. Moreover, the phenotype of UNC93B1-defective phagocytes could be recapitulated by the simultaneous absence of TLR7, 9, and 13 but not by the absence of individual TLRs. Collectively, our data show that neutrophils recognize Gram-positive and Gram-negative bacteria by means of multiple phagosomal TLRs, resulting in de novo synthesis of Cxcl2, amplification of neutrophil recruitment, and potentiation of their antibacterial activities. These data may be useful to devise alternative therapeutic strategies aimed at enhancing the recruitment and the functional activities of polymorphonuclear leukocytes during infections caused by antibiotic-resistant bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。