Activation of the Wnt/β-Catenin Pathway by an Inflammatory Microenvironment Affects the Myogenic Differentiation Capacity of Human Laryngeal Mucosa Mesenchymal Stromal Cells

炎症微环境激活Wnt/β-Catenin通路影响人喉黏膜间充质基质细胞的成肌分化能力

阅读:8
作者:Runqin Yang, Xiaoshan Yang, Shiyu Liu, Leiguo Ming, Zhifei Zhou, Yuanyuan Liang, Yu Zhao, Fuxing Zhou, Zhihong Deng, Yan Jin

Abstract

Various microenvironments influence the multiple differentiation potential of mesenchymal stromal cells. For example, inflammatory microenvironment can suppress the myogenic differentiation capability of laryngeal mucosa mesenchymal stromal cells (LM-MSCs). The present study therefore sought to identify the underlying molecular mechanisms regulating these processes. We isolated a novel population of MSCs, LM-MSCs, from the laryngeal mucosa tissues. The cells were cultured in osteogenic, adipogenic, and myogenic differentiation media in the presence or absence of interleukin-1β and tumor necrosis factor α (to simulate inflammatory microenvironment). The expression of active β-catenin, p-GSK3β, and GSK3β were detected by western blot and real-time polymerase chain reaction. The myogenic differentiation of LM-MSCs in inflammatory microenvironment and the regulation by Dickkopf-1 (DKK1) were tested both in vivo and in vitro. Inflammatory microenvironment could suppress the osteogenesis, adipogenesis, and myogenesis of LM-MSCs. The Wnt/β-catenin signaling pathway was activated during myogenesis in inflammatory microenvironment. The suppressed myogenic differentiation capability of LM-MSCs in inflammatory microenvironment was reversed by DKK1. By regulating the Wnt/β-catenin signaling pathway, DKK1 can improve the myogenic differentiation of LM-MSCs in inflammatory microenvironment. Thus, the results of this study may help improve the efficacy of LM-MSCs injection therapy for vocal fold regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。