Involvement of RAGE in radiation-induced acquisition of malignant phenotypes in human glioblastoma cells

RAGE 参与人类胶质母细胞瘤细胞放射诱导获得恶性表型

阅读:7
作者:Hiromu Seki, Kazuki Kitabatake, Sei-Ichi Tanuma, Mitsutoshi Tsukimoto

Abstract

Glioblastoma (GBM), a highly aggressive malignant tumor of the central nervous system, is mainly treated with radiotherapy. However, since irradiation may lead to the acquisition of migration ability by cancer cells, thereby promoting tumor metastasis and invasion, it is important to understand the mechanism of cell migration enhancement in order to prevent recurrence of GBM. The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor activated by high mobility group box 1 (HMGB1). In this study, we found that RAGE plays a role in the enhancement of cell migration by γ-irradiation in human GBM A172 cells. γ-Irradiation induced actin remodeling, a marker of motility acquisition, and enhancement of cell migration in A172 cells. Both phenotypes were suppressed by specific inhibitors of RAGE (FPS-ZM1 and TTP488) or by knockdown of RAGE. The HMGB1 inhibitor ethyl pyruvate similarly suppressed γ-irradiation-induced enhancement of cell migration. In addition, γ-irradiation-induced phosphorylation of STAT3 was suppressed by RAGE inhibitors, and a STAT3 inhibitor suppressed γ-irradiation-induced enhancement of cell migration, indicating that STAT3 is involved in the migration enhancement downstream of RAGE. Our results suggest that HMGB1-RAGE-STAT3 signaling is involved in radiation-induced enhancement of GBM cell migration, and may contribute to GBM recurrence by promoting metastasis and invasion.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。