Partial depletion of gamma-actin suppresses microtubule dynamics

γ-肌动蛋白的部分耗竭抑制微管动力学

阅读:9
作者:Sela T Po'uha, Stephane Honore, Diane Braguer, Maria Kavallaris

Abstract

Actin and microtubule interactions are important for many cellular events, however these interactions are poorly described. Alterations in γ-actin are associated with diseases such as hearing loss and cancer. Functional investigations demonstrated that partial depletion of γ-actin affects cell polarity and induces resistance to microtubule-targeted agents. To determine whether γ-actin alterations directly affect microtubule dynamics, microtubule dynamic instability was analyzed in living cells following partial siRNA depletion of γ-actin. Partial depletion of γ-actin suppresses interphase microtubule dynamics by 17.5% due to a decrease in microtubule shortening rates and an increase in microtubule attenuation. γ-Actin partial depletion also increased distance-based microtubule catastrophe and rescue frequencies. In addition, knockdown of γ-actin delayed mitotic progression, partially blocking metaphase-anaphase transition and inhibiting cell proliferation. Interestingly, in the presence of paclitaxel, interphase microtubule dynamics were further suppressed by 24.4% in the γ-actin knockdown cells, which is comparable to 28.8% suppression observed in the control siRNA treated cells. Paclitaxel blocked metaphase-anaphase transition in both the γ-actin knockdown cells and the control siRNA cells. However, the extent of mitotic arrest was much higher in the control cells (28.4%), compared to the γ-actin depleted cells (8.5%). Therefore, suppression of microtubule dynamics by partial depletion of γ-actin is associated with marked delays in metaphase-anaphase transition and not mitotic arrest. This is the first demonstration that γ-actin can modulate microtubule dynamics by reducing the microtubule shortening rate, promoting paused/attenuated microtubules, and increasing transition frequencies suggesting a mechanistic link between γ-actin and microtubules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。