Ubiquitin-specific protease 8 inhibits lipopolysaccharide-triggered pyroptosis of human bronchial epithelial cells by regulating PI3K/AKT and NF-κB pathways

泛素特异性蛋白酶 8 通过调节 PI3K/AKT 和 NF-κB 通路抑制脂多糖引发的人支气管上皮细胞焦亡

阅读:4
作者:Lu Liu, Liting Huan, Yu Zhang, Wei Wei, Zhihai Chen, Di Xu, Xiufeng Huang, Yaoxi Tan, Hongxing Li

Abstract

Asthma, characterized by dysfunction of airway epithelial cells, is regarded as a chronic inflammatory disorder in the airway. Ubiquitin-specific protease 8 (USP8) belongs to ubiquitin proteasome system and mediates the stability of E3 ligases. The anti-inflammatory effect of USP8 has been widely investigated in distinct diseases, while the role of USP8 in asthma remains elusive. Firstly, human bronchial epithelial cells (BEAS-2B) were treated with lipopolysaccharide, which reduced the cell viability of BEAS-2B and induced the secretion of lactate dehydrogenase (LDH). Moreover, the expression of USP8 was downregulated in BEAS-2B post lipopolysaccharide treatment. Secondly, overexpression of USP8 enhanced cell viability of lipopolysaccharide-treated BEAS-2B, and reduced the LDH secretion. USP8 overexpression also attenuated lipopolysaccharide-induced upregulation of TNF-α, IL-6, and IL-1β in BEAS-2B. Thirdly, lipopolysaccharide treatment promoted the expression of NLRP3 (NLR Family Pyrin Domain Containing 3), N-terminal domain of gasdermin D (GSDMD-N), caspase-1, IL-1β, and IL-18 in BEAS-2B, which was inhibited by USP8 overexpression. Lastly, USP8 overexpression decreased the phosphorylation of NF-κB, while it increased the phosphorylation of PI3K and AKT in lipopolysaccharide-treated BEAS-2B. In conclusion, USP8 inhibited lipopolysaccharide-triggered inflammation and pyroptosis in human bronchial epithelial cells by activating PI3K/AKT signaling and inhibiting NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。