MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11

MicroRNA-30c 通过调节 TWF1 和 IL-11 抑制人类乳腺肿瘤化疗耐药性

阅读:2
作者:Jessica Bockhorn, Rachel Dalton, Chika Nwachukwu, Simo Huang, Aleix Prat, Kathy Yee, Ya-Fang Chang, Dezheng Huo, Yujia Wen, Kaitlin E Swanson, Tyler Qiu, Jun Lu, Seo Young Park, M Eileen Dolan, Charles M Perou, Olufunmilayo I Olopade, Michael F Clarke, Geoffrey L Greene, Huiping Liu

Abstract

Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. Epithelial-to-mesenchymal transition has been shown to correlate with therapy resistance, but the functional link and signalling pathways remain to be elucidated. Here we report that microRNA-30c, a human breast tumour prognostic marker, has a pivotal role in chemoresistance by a direct targeting of the actin-binding protein twinfilin 1, which promotes epithelial-to-mesenchymal transition. An interleukin-6 family member, interleukin-11 is identified as a secondary target of twinfilin 1 in the microRNA-30c signalling pathway. Expression of microRNA-30c inversely correlates with interleukin-11 expression in primary breast tumours and low interleukin-11 correlates with relapse-free survival in breast cancer patients. Our study demonstrates that microRNA-30c is transcriptionally regulated by GATA3 in breast tumours. Identification of a novel microRNA-mediated pathway that regulates chemoresistance in breast cancer will facilitate the development of novel therapeutic strategies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。