Interleukin-27 (IL-27) Promotes Chlamydial Infection in the Female Genital Tract

白细胞介素-27(IL-27)促进女性生殖道衣原体感染

阅读:9
作者:Yujie Zhao, Zhi Huo, Zengzi Zhou, Christian Cervantes, Jianlin Chen, Zhenming Xu, Guangming Zhong

Abstract

Intravaginal infection of mice with Chlamydia muridarum has been used for investigating the mechanisms of Chlamydia trachomatis-induced pathogenicity and immune responses. In the current study, the mouse model was used to evaluate the impact of interleukin-27 (IL-27) and its receptor signaling on the susceptibility of the female genital tract to chlamydial infection. Mice deficient in IL-27 developed significantly shortened courses of chlamydial infection in the female genital tract. The titers of live Chlamydia recovered from the genital tract of IL-27-deficient mice declined significantly by day 7 following intravaginal inoculation. These observations suggest that IL-27 may promote chlamydial infection in the female mouse genital tract. This conclusion was validated using IL-27 receptor (R)-deficient mice. Further, the reduction in chlamydial burden corelated with the increase in gamma interferon (IFN-γ) and IL-17 in the genital tract tissues of the IL-27R-deificent mice. However, depletion of IFN-γ but not IL-17 from the IL-27R-deificent mice significantly increased the chlamydial burden, indicating that IL-27 may mainly suppress IFN-γ-mediated immunity for promoting chlamydial infection. Finally, knockout of IL-27R from T cells alone was sufficient for significantly shortening the infectious shedding courses of Chlamydia in the mouse genital tract. The above-described results have demonstrated that Chlamydia can activate IL-27R signaling in Th1-like cells for promoting its infection in the female genital tract, suggesting that attenuating IL-27 signaling in T cells may be used for enhancing genital tract immunity against chlamydial infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。