Physical properties of newly synthesized noncentrosymmetric TaIr2B2 and NbIr2B2 superconductors: an extensive comparison of GGA and LDA functional investigations

新合成的非中心对称 TaIr2B2 和 NbIr2B2 超导体的物理特性:GGA 和 LDA 功能研究的广泛比较

阅读:5
作者:Jakiul Islam, Mohasena Ahamed, Md Saiful Alam, Newaz Mohammad Bahadur

Abstract

In recent years, noncentrosymmetric (NCS) structural compounds have received much attention from the scientific community in the exploration for the unconventional nature of superconductivity with exciting physical properties. This study uses the comprehensive generalized gradient approximation (GGA) and local density approximation (LDA) to gain insights into the physical properties of two recently synthesized Ir-based NCS superconductors, TaIr2B2 and NbIr2B2. The structural parameters, mechanical performance, electronic structure, Debye temperature, melting temperature, electronic specific heat, and electron-phonon coupling constant of TaIr2B2 and NbIr2B2 are explored and discussed in detail. Density functional theory (DFT) optimized structural parameters of both NCS phases agree well with experimental observation. Both GGA and LDA calculations show that the compounds are ductile, machinable, mechanically stable, and anisotropic in nature. The elastic moduli and hardness calculations reveal that TaIr2B2 is harder than NbIr2B2. The calculation of the melting temperature reveals that TaIr2B2 is more suitable for high temperature technology applications compared to NbIr2B2. Both GGA and LDA functionals reveal that the optical functions are very similar. Both compounds display a significant amount of reflectivity spectra over a wide range of photon energies. The GGA functional reveals a somewhat higher density of states value compared to that of LDA. The present calculated values of the electron-phonon coupling constant of both compounds are consistent with values previously reported from experimental studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。