High-Mobility Group Box 1 From Hypoxic Trophoblasts Promotes Endothelial Microparticle Production and Thrombophilia in Preeclampsia

缺氧滋养细胞中的高迁移率族蛋白 B1 促进先兆子痫中的内皮微粒产生和血栓形成

阅读:5
作者:Yae Hu, Ruhong Yan, Ce Zhang, Zhichao Zhou, Meng Liu, Can Wang, Hong Zhang, Liang Dong, Tiantian Zhou, Yi Wu, Ningzheng Dong, Qingyu Wu

Approach and results

We analyzed protein markers on plasma microparticles from preeclampsia women and found that the increased circulating microparticles were mostly from endothelial cells. In proteomic studies, we identified HMGB1 (high-mobility group box 1), a proinflammatory protein, as a key factor from hypoxic trophoblasts in stimulating microparticle production in human umbilical vein endothelial cells. Immunodepletion or inhibition of HMGB1 in the conditioned medium from hypoxic human trophoblasts abolished the endothelial microparticle-stimulating activity. Conversely, recombinant HMGB1 stimulated microparticle production in cultured human umbilical vein endothelial cells. The microparticles from recombinant HMGB1-stimulated human umbilical vein endothelial cells promoted blood coagulation and neutrophil activation in vitro. Injection of recombinant HMGB1 in pregnant mice increased plasma endothelial microparticles and promoted blood coagulation. In preeclampsia women, elevated placental HMGB1 expression was detected and high levels of plasma HMGB1 correlated with increased plasma endothelial microparticles. Conclusions: Our results indicate that placental hypoxia-induced HMGB1 expression and release from trophoblasts are important mechanism underlying increased circulating endothelial microparticles and thrombophilia in preeclampsia.

Conclusions

Our results indicate that placental hypoxia-induced HMGB1 expression and release from trophoblasts are important mechanism underlying increased circulating endothelial microparticles and thrombophilia in preeclampsia.

Objective

Thrombophilia is a major complication in preeclampsia, a disease associated with placental hypoxia and trophoblast inflammation. Preeclampsia women are known to have increased circulating microparticles that are procoagulant, but the underlying mechanisms remain unclear. In this study, we sought to understand the mechanism connecting placental hypoxia, circulating microparticles, and thrombophilia. Approach and

Results

We analyzed protein markers on plasma microparticles from preeclampsia women and found that the increased circulating microparticles were mostly from endothelial cells. In proteomic studies, we identified HMGB1 (high-mobility group box 1), a proinflammatory protein, as a key factor from hypoxic trophoblasts in stimulating microparticle production in human umbilical vein endothelial cells. Immunodepletion or inhibition of HMGB1 in the conditioned medium from hypoxic human trophoblasts abolished the endothelial microparticle-stimulating activity. Conversely, recombinant HMGB1 stimulated microparticle production in cultured human umbilical vein endothelial cells. The microparticles from recombinant HMGB1-stimulated human umbilical vein endothelial cells promoted blood coagulation and neutrophil activation in vitro. Injection of recombinant HMGB1 in pregnant mice increased plasma endothelial microparticles and promoted blood coagulation. In preeclampsia women, elevated placental HMGB1 expression was detected and high levels of plasma HMGB1 correlated with increased plasma endothelial microparticles. Conclusions: Our results indicate that placental hypoxia-induced HMGB1 expression and release from trophoblasts are important mechanism underlying increased circulating endothelial microparticles and thrombophilia in preeclampsia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。