Synthesis and characterization of thermally stable aromatic polyamides and poly(1,3,4-oxadiazole-amide)s nanoparticles containing pendant substituted bezamides

含有侧链取代苯甲酰胺的热稳定芳香族聚酰胺和聚(1,3,4-恶二唑酰胺)纳米粒子的合成与表征

阅读:5
作者:Hammed Ham Hassan, Amel F Elhusseiny, Yasmeen Ma Elkony, El-Sayed Me Mansour

Background

The introduction of pendent bulky groups along the polymer backbone

Conclusions

We report the synthesis of aromatic polyamides and poly(1,3,4-oxadiazole-amide)s nanoparticles with pendant structures comprised of m- and p-acetoxybenzamide groups. The thermal behavior of all polymers exhibited two major decompositions due to breakage of the acetoxy group in the lateral chain and cleavage of the main amide bonds. Structure- photoluminescence correlation demonstrated an interesting connection between structural modification and optical properties. The blue emissions for the polyamide derived from benzidine, attributed to the highly conjugation system, was blue shifted with the introduction of flexible linkages. The prepared polymers dissolved in warm polar aprotic solvents. Further investigations to obtain films with reasonably good mechanical properties for different applications are in progress.

Results

Aromatic polyamides and poly(1,3,4-oxadiazole-amide)s nanoparticles with pendant structures comprised of m- and p-acetoxybenzamide groups were successfully prepared and characterized using different analytical methods. Most polyamides were obtained as well-separated spherical nanoparticles while aramide containing pyridine produced aggregated particles attributed to the molecular self assembly via H-bond directed organization of molecular precursors. The thermal behavior of all polymers exhibited two major thermal decompositions due to the subsequent breakage of the acetoxy group in the lateral chain and cleavage of the main amide bonds. Photoluminescence studies revealed that the blue emissions for the polyamide derived from benzidine were blue-shifted (shifted to a lower wavelength) compared to that of polyamides containing flexible linkages. Conclusions: We report the synthesis of aromatic polyamides and poly(1,3,4-oxadiazole-amide)s nanoparticles with pendant structures comprised of m- and p-acetoxybenzamide groups. The thermal behavior of all polymers exhibited two major decompositions due to breakage of the acetoxy group in the lateral chain and cleavage of the main amide bonds. Structure- photoluminescence correlation demonstrated an interesting connection between structural modification and optical properties. The blue emissions for the polyamide derived from benzidine, attributed to the highly conjugation system, was blue shifted with the introduction of flexible linkages. The prepared polymers dissolved in warm polar aprotic solvents. Further investigations to obtain films with reasonably good mechanical properties for different applications are in progress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。