Phosphatase of regenerating liver-3 (PRL-3) is overexpressed in classical Hodgkin lymphoma and promotes survival and migration

再生肝磷酸酶-3(PRL-3)在经典霍奇金淋巴瘤中过度表达,促进生存和迁移

阅读:5
作者:Magnus Aassved Hjort, Håkon Hov, Pegah Abdollahi, Esten Nymoen Vandsemb, Unn-Merete Fagerli, Bendik Lund, Tobias Schmidt Slørdahl, Magne Børset, Torstein Baade Rø

Background

Phosphatase of regenerating liver-3 (PRL-3) is implicated in oncogenesis of hematological and solid cancers. PRL-3 expression increases metastatic potential, invasiveness and is associated with poor prognosis. With this study, we aimed to show a possible oncogenic role of PRL-3 in classical Hodgkin lymphoma (cHL).

Conclusion

PRL-3 was overexpressed in a subset of cHL patients. Inhibition of PRL-3 increased IL-13 cytokine production and reduced migration, proliferation and viability. The effects could be mediated through regulation of the anti-apoptotic molecule Mcl-1 and a feedback loop of IL-13 mediated activation of STAT6. This point to a role for PRL-3 in the pathogenesis of Hodgkin lymphoma, and PRL-3 could be a possible new drug target.

Methods

PRL-3 expression was measured in 25 cHL patients by immunohistochemistry and gene expression was analyzed from microdissected malignant cells. We knocked down PRL-3 in the cHL cell lines L1236 and HDLM2 and used small molecular inhibitors against PRL-3 to investigate proliferation, migration and cytokine production.

Results

PRL-3 protein was expressed in 16% of patient samples. In three different gene expression datasets, PRL-3 was significantly overexpressed compared to normal controls. PRL-3 knockdown reduced proliferation, viability and Mcl-1 expression in L1236, but not in HDLM2 cells. Thienopyridone, a small molecule inhibitor of PRL-3, reduced proliferation of both L1236 and HDLM2. PRL-3 affected IL-13 secretion and enhanced STAT6 signaling. IL-13 stimulation partially rescued proliferation in L1236 cells after knockdown of PRL-3. PRL-3 knockdown reduced migration in both L1236 and HDLM2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。