A Miniature Sucrose Gradient for Polysome Profiling

用于多核糖体分析的微型蔗糖梯度

阅读:6
作者:Ansul Lokdarshi, Albrecht G Von Arnim

Abstract

Polysome profiling by sucrose density gradient centrifugation is commonly used to study the overall degree of translation (messenger RNA to protein synthesis). Traditionally, the method begins with synthesis of a 5-10 mL sucrose gradient onto which 0.5-1 mL of cell extract is layered and centrifuged at high speed for 3-4 h in a floor-model ultracentrifuge. After centrifugation, the gradient solution is passed through an absorbance recorder to generate a polysome profile. Ten to twelve fractions (0.8-1 mL each) are collected for isolating different RNA and protein populations. The overall method is tedious and lengthy (6-9 h), requires access to a suitable ultracentrifuge rotor and centrifuge, and requires a substantial amount of tissue material, which can be a limiting factor. Moreover, there is often a dilemma over the quality of RNA and protein populations in the individual fractions due to the extended experiment times. To overcome these challenges, here we describe a miniature sucrose gradient for polysome profiling using Arabidopsis thaliana seedlings that takes ~1 h centrifugation time in a tabletop ultracentrifuge, reduced gradient synthesis time, and also less tissue material. The protocol described here can be easily adapted to a wide variety of organisms and polysome profiling of organelles, such as chloroplasts and mitochondria. Key Features • Mini sucrose gradient for polysome profiling that requires less than half the processing time vs. traditional methods. • Reduced starting tissue material and sample volume for sucrose gradients. • Feasibility of RNA and protein isolation from polysome fractions. • Protocol can be easily modified to a wide variety of organisms (and even polysome profiling of organelles, such as chloroplast and mitochondria). Graphical Overview.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。